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[ including the F(0) term calculated from the known 
chemical  composit ion].  This represents ten param- 
eters to be refined (eight phases + K  + or) from 27 
observations. The initial estimate of K,. was derived 
from 

g,.= F(O)/Y~ F(h') 2. (23) 
h'  

Equation (23) assumes that the F(h') are on an 
absolute scale. 

Table 1 summarizes  the results of the refinement 
of  random phases for ten consecutive trials. To obtain 

an addi t ional  figure of merit, the R value was also 
computed at the end of each refinement cycle. The 
refinement process stopped when further minimi-  
zation of M produced no decrease of R. Inspection 
of Table 1 indicates that most trials (eight out of  ten) 
converged in four-five cycles. Trial 5 has been selec- 
ted to show the refinement process in more detail. 
Table 2 lists the results of  the refinement,  Fig. 2 
illustrates the evolution of M and R as functions of 
the number  of cycles and Fig. 1 reproduces the final 
Fourier  map  computed with the estimates of the struc- 
ture factors obtained from (9). 
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Fig. 2. M (solid line) and R (dashed line) as a function of the 

number of cycles of refinement for trial 5. 
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Abstract 

The resolution functions for various powder  diffrac- 
tometers using paral le l -beam geometry are calculated. 
These diffractometers consist of  monochromator ,  
sample and eventually a post-specimen analyser.  The 
theory is thus similar  to that of  two- or three-axis 

0108-7673/91 / 050571-07503.00 

diffractometers. Special attention has to be given to 
the different diffraction mechan isms  occurring at per- 
fect crystals, synthetic mult i layers  or mosaic crystals. 
Resolution functions for all three types of  mono- 
chromators  are presented. Exper iments  performed at 
HASYLAB and other laboratories show good agree- 
ment with theory. 
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Introduction General theory 

Synchrotron radiation exhibits an intense continuous 
spectrum and a high collimation. Powder diffraction 
experiments at a synchrotron-radiation source are 
thus mainly done in parallel-beam geometry. In the 
angular dispersive mode - the energy dispersive 
diffraction will not be treated in this paper - a mono- 
chromator selects a wavelength band out of the con- 
tinuous spectrum. This monochromator  is usually a 
perfect single crystal or a nondispersive double- 
crystal arrangement which can be a pair of single 
crystals (Wroblewski, Ihringer & Maichle, 1988) in 
the ( n , - n )  setting or a channel-cut crystal (Cox, 
Hastings, Thomlinson & Prewitt, 1983; Parrish, Hart 
& Huang, 1986). Recently, synthetic multilayers 
(Stephenson, 1988; Wroblewski, Eichhorn, Ihringer, 
Kirfel & Lux, 1988) and mosaic crystals (Hohlwein, 
Siddons & Hastings, 1988; Wroblewski, 1990a) 
have also been applied. The radiation diffracted 
by the powder is analysed by a receiving slit, a 
position-sensitive detector or a Soller collimator 
or by a dispersive element like an analyser 
crystal. 

The resolution function for neutron powder diffrac- 
tometers, given by the Caglioti formula (Caglioti, 
Paoletti & Ricci, 1958; Caglioti, Paoletti & Ricci, 
1960), applies only to one mosaic crystal as mono- 
chromator and a nondispersive detecting system (slit, 
position-sensitive detector, Soller slit). A more gen- 
eral approach was used by Bubakova, Drahokoupil 
& Fingerland (1961) for a triple-crystal diffractometer 
with mosaic and /o r  perfect crystals. Their approach 
can be generalized, treating the powder sample as a 
crystal with infinite mosaic spread. Although there 
have been several papers dealing with multicrystai 
arrangements (Cooper & Nathans, 1966, Nielsen & 
Bjerrum Moiler, 1968; Pynn, Fujii & Shirane 1983; 
Cowley, 1987), there is to my knowledge only one 
author (Sabine, 1987) treating powder diffrac- 
tometers. Although this author mentioned the "Dar- 
win solution' for perfect crystals he did not account 
for the differences between perfect crystals and 
mosaic crystals. For perfect crystals the incident and 
reflected rays always form the same angle with the 
reflecting lattice planes while for mosaic crystals the 
sum of both angles remains constant. Taking this into 
account mosaic and perfect crystals give different 
resolution functions. 

In the following the approach of Bubakova, 
Drahokoupil  & Fingerland (1961) will be used to 
determine the resolution functions of several powder 
diffractometers. After a general formulation for a 
multicrystal arrangement, several arrangements typi- 
cal for powder diffractometry will be investigated. 
The resolution functions of powder diffractometers 
are then calculated in the Gaussian approximation 
and compared to experimental results. 

For a multicrystal arrangement the intensity at an 
angle Y from the peak position is given by the convol- 
ution of the  angular H ( a ,  q~) and spectral lo(h ) distri- 
bution of the incident beam with the transmission 
functions T~ Of all following optical elements and the 
acceptance of the detector S. 

l ( T ) =  J . . . J dh  dee d~p df l l  . . . d f l ,  de ,  . . . de,, 

X/o(A ) H(a,~p) I7I T~(fl,, x,, y,, e,) 
i ~ l  

× S(T ,  x,,, fl,,, e,,). (1) 

At a synchrotron-radiation source lo(A) is a slowly 
varying function and can be taken as constant. 
H ( a ,  ~ )  can be decomposed into a component in the 
reflection plane, F(oe), and another component per- 
pendicular to it, G(~0). The transmission function for 
the ith crystal T~ can be written as a product of its 
Darwin width D ( x i - Y i ,  e,) and the mosaic distribu- 
tion M(/3~, e,). fl~ is the in-plane deviation of a mosaic 
block of the ith crystal from the exact Bragg angle. 
y i = A h ( d 6 ) i / d A )  describes the deviation from the 
Bragg condition due to the wavelength spread while 
x, gives the angular deviation from the Bragg position 
Eg~ at the ith crystal, x, is given by the misset /3, of 
the ith crystal and the deviation in the direction of 
the incident beam which is due to the divergence and 
deviations caused by previous reflections and can be 
found recursively. 

x, = cr,_,.,(x,_, +/3,_,) +/3, (2) 

where cr~_~,~ is -1  or +1 according to whether the 
crystals i - 1 and i are on the same ( -1 )  or on opposite 
sides (+1) of the beam. For the first crystal x0 = 0 and 
f l o = a ,  leading to x ~ = a + B ~ .  S ( y + x , + f l , , e , )  
describes the entrance slit in front of the detector. If 
an open detector is used and if the scan is done with 
the last crystal the acceptance of the detector, S, is 
constant and ft, in 7", must be replaced by f t . - 7 .  

The e~ arise from the out-of-plane contributions of 
the divergence and the mosaic spreads. They can be 
calculated following Azaroff (1974). They are of 
second order and will therefore be neglected in the 
following. This is justified even for the infinite 
mosaicity of a powder because in the experiment only 
a small part of the Debye-Scherrer  cone is detected, 
corresponding to a small out-of-plane mosaicity. With 
this assumption the integration over ¢ and all e~ can 
be carried out and we obtain with 10(h)= constant 

i(~,)-~i. . . .f  d,~ da  d/3, . . .  d/~. 

xF(a) fi {D,(x,-y, lM,(fl,)}S(y+x,,+fl,,) 
i = l  

(3a) 
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or 
l ( y ) - ~ j . . . ~ d A d a d f l l . . . d / 3 , ,  

n 

x F(,~) II {D~(x~-y,)M~(/3,)} 
i = 1  

x D , ( x , - y , )M, , ( / 3 , - . / ) .  (3b) 

Equation (3a)  is valid for a scan with a slit system 
in front of  the detector, (3b) holds for an analyser  
crystal. 

Equations (1) and (3) are valid for every type of 
multicrystal diffractometer. To apply it to powder  
diffractometers we will assume that one of the crystals 
has infinite mosaicity,  which means  M(/3) = constant. 
To separate instrumental  effects from sample  effects 
we will assume a vanishing Darwin width for the 
powder,  D ( x - y )  = 6 ( x - y ) .  

Cases of practical interest 

(a) Perfect-crystal monochromator, slit in front of 
detector 

For a perfect-crystal monochromator  M1(/31) = 
6(/31) leads to 

l ( y )  ~ j j j ' d A  dc~ dfl2F(o~)Dl(o~-yl) 

X S( Y + °'1,2 a + 2/32) (4) 

using y, = A A ( d O J d A )  = AA tan O~ and x2 = 
cr~.2a +/32 = Y2 we can substitute AA and carry out the 
integration over A: 

I ( y)~-~ da d/32 F(a) Dl{a( l-~rl,2tan O l / t a n  02) 

- /32(tan O l / t an  02)}S{y+~rl,2~ +2/32}. (5) 

can therefore set D l ( x l - y l ) =  6(x l -y l ) .  With fll = 
Yl - a we get 

l ( y ) = / j j d A  d a d / 3 2 F ( a ) M l ( y l - a )  

X S[T  + o '1,2(2yl-  c~) + 2/3e]. (8) 

Insertion of AA gives 

I(-),)=~ da d/32 F(a) Ml{a(trl,2tan 01-tan02)~ N 

+/32 tan 01/N}S{ y - O f O r l ,  2 tan 0 2 / N  

+ 2/32(tan 02 - ~rl,2 tan O i ) / N }  (9) 

with N = tan O2 - 2o'1,2 tan Oi • 

( d) Mosaic-crvstal monochromator, perfect-crystal 
analyser 

Making the same assumpt ions  as for cases (b) and 
(c) we get 

l ( , / ) - - - I l l  dA d a  d/32 F ( a ) M , ( y l - a )  

x D3{ y + o2,3[,rl,2(2yl- a )+  2/32] - Y3}. 

(10) 

Replacing the y, and carrying out the integration over 
A we get 

I (y) =- ~ d a  d/32F ( a ) M { c~(o~1,2 tan O i - t a n  02) /N 

+/32 tan O i / N }  

× D3{T+ o~o-l,2(tan O 3 -  cr2,~ tan 02) /N  

+/32(20"2,3 tan O2 -- 2erl,2(f2, 3 tan Oi 

- t a n  03)/N}. (11) 

( b ) Perfect-crystal monochromator, perfect-crystal 
analyser 

In this case M1(/31)=0(/31) and M3(/3~-7)  = 
~(/33- Y), leading to 

I('),) = I J j  dA dc~ d/32F(a)  D l ( a - y l )  

x D3[y+~r2,3(trl,2a+2/32)-y3]. (6) 

Again, we can replace AA and carry out the integra- 
tion over A, yielding 

l ( y )  = j'j" d a  8/32 F(a)Dl{a(1-cIl .2tan O l / t a n  02) 

-/32(tan Ol / t an  02)} 

x D3{T+ a~zl,2(cr2.3-tan O3/tan 02) 

+ /32(2(r2,3-tan O3/tan 02)}. (7) 

(c) Mosaic-crystal monochromator, slit in front of 
detector 

For mosaic crystals the Darwin width is in most 
cases negligible compared to the mosaic spread. We 

( e ) Double-crvstal monochromators 

For a double-crystal  monochromator  with two 
identical perfect crystals in the (+, - )  setting or the 
equivalent  case of a channel-cut  crystal, DI would 
have to be replaced by DI*D2 and all the fol lowing 
indices incremented by 1. But since DI and D2 are 
identical D~ can be used instead. 

In the case of two mosaic  crystals in the ( + , - )  
setting we have Yl = Y2- For vanishing Darwin widths 
we get /31 = - / 3 2  so that the contr ibut ions of/31 and 
/32 to the x~ ( i->3) cancel out. With fll = Y I - ~  and 
a symmetr ic  mosaic distr ibut ion we have the same 
expression as in the case of perfect crystals but with 
D~ replaced by M~. 

( f  ) Mosaic-crystal analyser 

If a mosaic crystal is appl ied as analyser  crystal 
we have to replace D3(x3-y 3) by M3(f13). Condi t ion  
X3 = Y3 gives /33 = Y3 -- °r2,3[°'l,2(2Yl -- a )  +2/32] SO that 
M3 has the same form as D3 and the same formal ism 
can be applied.  
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Gaussian approximation 

The expressions calculated above can be evaluated 
numerically and will give not only the half width but 
also the peak shape. This will be treated in a forthcom- 
ing paper. A good estimate for the half width as a 
function of the diffraction angle at the powder sample 
can be obtained from a Gaussian approximation 
which allows an analytical solution of the above 
equations. 

All the above integrals have the same form: 

z(~)-~ f I" do, d/3~ F(o,) T,(~u, + ~:v,) 

x T3(y+au3+/32v3) (12) 

where T now stands for D, M or S and the u, and 
v, are functions of the diffraction angles. In the 
Gaussian approximation we have 

I( y ) ~  ~ da  d/32 exp ( -a2 /2~  '2) 

x exp { - ( a u ,  +/32 v,)2/2A'2} 

xexp{-(y+au3+~2v~)~'/2A~ 2} (13) 

where 6 '  is given by the divergence of the incident 
beam and A'~ and A~ are related to the Darwin width, 
the mosaic spread or the slit width. Integration over 
a and /32 yields 

l( y )=exp  {-y2v~/2[v~.a '23 + v~A; 2 

+ (v, u3- v~u,)2O'2]} (14) 

leading to an instrumental width w', 

W '2 = A ~2 4" ( U3/D l )2A 12 4" { (  D l I ' / 3  - I - )3  g / ,  ) / / i l l  }2~j,2. (15) 

w', A'~, A~ and ~' are the 00 widths of the  correspond- 
ing Gaussian curve. The half widths (FWHM)  w, 
Al, A3 and $ can be obtained dividing each by 2 In 2. 

For the different cases treated above we get 

(a) w 2= A ~ + ( 2 t a n  6)z/tan Ot)2d 2 

+ { ( 2 t a n  O 2 -  001,2 t a n  Ot) / tan  6),}2~2 (16) 

(b) w 2= d~+{( tan  6)3--2002,3 t an  02)~tan 6),}2A~ 

4" {(20°2.3 tan 02 -- 002.3001.2 tan O~ 

--tan 6)3)/tan O~}26 2 (17) 

(c) w 2 = d~+  { 2 ( t a n "  6)2 - 00,.2 tan O,) / tan  O,}2Ai ~ 

4--{(2 tan 0.,-00,.2 tan O,) / tan  O,}2~ 2 (18) 

(d )  w 2 :  A]4"{(2002. 3 tan 6)2--2002,3001,2 t an  6), 

-tan 6)~)/tan 2 , • 0,} Ai 

4- {(20"2.3 tan 6)2 -- (72.3001.2 tan 6), 

--tan 6)~)/tan 6)~}2t92. (19) 

Focusing 

Most of the dispersive terms in the above expressions 
vanish for a certain angle 02. The occurrence of such 
a focusing point can be explained by simple argu- 
ments and can help to check the above expressions. 
As an example let us take the term proportional to 
the reflection width of the monochromator/1 ,  for the 
case (b). 

An ideal crystal does not produce additional diver- 
gence so that in the case of an incident parallel white 
beam a parallel beam with a certain bandwidth is 
reflected onto the sample. Here the Bragg condition 
gives AA/A = f12 cot O2. The angular deviation caused 
by a grain tilted by/32 is 2/32. To fulfil the condition 
AA/A =2/32c0t 03 for all A and /32 we must have 
2 tan  O2=tan  0 3. Otherwise different wavelengths 
are reflected at different angles. 

From the above equations it is also clear that it is 
desirable to use not the dispersive (o-~_,.~ = - 1 )  but 
the slightly dispersive ( n , - m )  setting (o-~_l.~=l), 
because the half width is generally smaller in this case. 

Comparison with experiments 

To my knowledge only experiments using either one 
perfect crystal (or synthetic multilayer) or a double- 
crystal monochromator  have been reported so far. 
Thus, only the resolution functions (a) and (b) can 
be compared with experimental values. Most experi- 
ments were performed by the author at HASYLAB 
beamline F1 (Wroblewski, Ihringer & Maichle, 1988), 
but also data from experiments at other beamlines in 
various laboratories [Cernik, Murray, Pattison & 
Fitch (1990) (Fig. 1); K/ister, Limper & Reinhardt 
(1988) (Fig. 4); Cox, Hastings, Thomlinson & Prewitt 
(1983) (Fig. 5)] are compared with theory. Figs. 1 
and 2 show resolution curves obtained with a receiv- 
ing slit (or a Soller collimator). The resolution func- 
tion for this case is given by (16). The mono- 
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Fig. I. R e s o l u t i o n  func t ions  fo r  a c h a n n e l - c u t  m o n o c h r o m a t o r  and  
a Sol ler  slit in f ron t  o f  the  de tec to r .  T h e  m o n o c h r o m a t o r  was 
e i the r  Si( I 11 ) (full  l ine, c rosses )  o r  Ge(  I 11 ) ( d a s h e d  line, circles) .  
l l . s ,  = 6 " =  0.029 m r a d ,  J t x ; ~  = 15"=  0.073 m r a d ,  (gl,s. = 13.83 °, 
(')~.<;~ = 13.26 °, A 3 = 0.56 m r a d ,  ~ = 0.12 m r a d ,  y = 0.149855 nm,  
s a m p l e :  Si S R M 6 4 0 b .  ( E x p e r i m e n t a l  va lues  f rom C e r n i k ,  Mur -  
ray,  Pa t t i son  & Fitch,  1990.) 
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chromators were a channel-cut crystal (Fig. 1) or a 
synthetic multi layer (Fig. 2). Figs. 3-8 show the resol- 
ution for the case that a (perfect) analyser crystal is 
applied in front of  the detector. In this case the 

FWHMf , , , T" I /  X l 

[deg] 1 

! 
F 1 , 

i 
0001 L L J , J 

0 20 L0 60 B0 100 20[deg] 

Fig. 2. Resolution funct ion for a synthetic mult i layer and a slit in 
front of  the detector,  z l t = 9 0 " = 0 . 4 4 m r a d ,  ( ' ) 1 = 2 . 1 5  ° , A3= 
5 mrad,  ~ = 0 - 1  mrad, A = 0 . 1 5 4 n m ,  sample: Ge. 
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Fig. 3. Resolut ion funct ion for an S i ( l l l )  double  perfect-crystal  
m o n o c h r o m a t o r  and a perfect  S i ( l l  1) analyser crystal in front 
of  the detector.  A t = A s = 6"=  0.029 mrad, (9, = (9.~ = 14.2 °, @ - 
0.15 mrad, A = 0.154 nm, sample: Si SRM 640b. The deviat ion 
of  the measured  values (crosses) from theory (full line) can be 
explained by assuming a sample -dependen t  b roadening  of  0.03 ° 
(dot ted line) probably  caused by pressing the sample into the 
holder.  

resolution function is given by (17). The mono-  
chromators were a double  perfect-crystal mono-  
chromator (Figs. 3-5) ,  a synthetic multilayer (Fig. 6) 
and a double  mosaic-crystal monochromator  (Figs. 
7, 8). In contrast to Fig. 3, the measurements  of  Fig. 
4 were made at H A S Y L A B  beamline B2 (Arnold et 
aL, 1989) with a focusing mirror in front of  the 
monochromator  which leads to a higher divergence 
@. The experimental  values in Fig. 5 were taken from 
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Fig. 5. Resolut ion funct ion for an Si(220) double  perfect-crystal  
m o n o c h r o m a t o r  in dispersive setting and a perfect  Si( 111 ) analy- 
ser. A 1 = 6"=  0.029 mrad,  (91 = 23"6°, '33 = 6" = 0.029 mrad,  (93 = 
14.2 °, @ = 0 . 1 4 m r a d ,  A = 0 . 1 5 4 n m ,  samples: CeO 2 (crosses),  
Bi20 3 (circles). (Exper imenta l  values from Cox, Hastings, Thom-  
linson & Prewitt, 1983.) 
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Fig. 4. Resolut ion funct ion for an S i ( l l l )  double  perfect-crystal  
m o n o c h r o m a t o r  and a perfect  Si(111) analyser crystal in front 
of  the detector.  In contrast  to Fig. 3 a focusing mirror  was appl ied 
in front of  the monoch roma to r ,  leading to a higher divergence 
of  the incident  beam. , 3 , = 3 3 = 5 " = 0 " 0 2 4 m r a d ,  (9,=(-)3 = 
11.78 ° , @ = 0 . 2 5 m r a d ,  A = 0 . 1 2 8 n m ,  samples: S i S R M 6 4 0 b  
(crosses), mica (circles). The effect of  the increased divergence 
(full line) on the resolution is evident. The dashed line shows 
the resolut ion funct ion for an unfocused beam (@ = 0.15 mrad).  
(Exper imenta l  values from Kiister, Limper  & Reinhardt ,  1988.) 

Fig. 6. Resolut ion function for a synthetic mult i layer  mono-  
chromator  and an S i ( l l l )  analyser  in front of  the detector.  
J ,  = 90"= 0.44 mrad,  O 1=2 .15  ° , A ~ = 6 " = 0 . 0 2 9 m r a d ,  (-)3 = 
14-2 ° , @=0.1  mrad,  A = 0 . 1 5 4 n m ,  sample: Ge. 
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Fig. 7. Resolut ion funct ion for a Be(004) double  mosaic-crystal  
m o n o c h r o m a t o r  and an S i ( l l l )  analyser.  J l  = 45"= 0.22 mrad,  
( 9 , = 4 5  °, J 3 = 5 " = 0 . 0 2 4 m r a d ,  (-)3 = 11.59 ° , t b - : 0 . 1 5 m r a d ,  A = 
0"126 nm. The sample was the same as in Fig. 3 so that  the same 
correct ions can be applied.  
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Cox, Hastings, Thomlinson & Prewitt (1983) who 
used a dispersive setting between monochromator  
and sample. All other measurements were made in 
the slightly dispersive setting. In all cases the variation 
of the half width with 202 is well described. 

Some of the measurements at the focused beamline 
B2 show, however, a halfwidth that is significantly 
smaller than the theoretical value. This can be 
explained by an asymmetric intensity distribution 
produced by the mirror. At grazing incidence an initial 
plane of radiation is output as an arc. In order to 
reach the focus an extreme ray must acquire an angle 
aM given by (Heald & Hastings, 1981) 

aM = 2to~2/(8to2 + ~o 2) (20) 

where to is the glancing angle of the mirror (7 mrad) 
and ~0 the horizontal divergence of the beam (4 mrad). 
This leads to a rather asymmetric intensity distribu- 
tion which makes the Gaussian approximation 
inadequate. Recent numerical calculations for beam- 
line B2 in which Darwin curves were used for Dl and 
O 3 and F(a) was calculated using the ray-tracing 
program SHADOW (Lai & Cerrina, 1986) gave non- 
Gaussian profiles. Furthermore, peak shape and peak 
width are very sensitive to the mirror adjustment 
(Wroblewski, 1990b). Investigations of these effects 
are in progress and will be treated in a forthcoming 
paper. 

Future prospects 

In all of the above resolution functions the dispersive 
terms contain the factor 1/tan tg~. It is therefore 
desirable to go to high monochromator  angles. Use 
of higher-order reflections of perfect monochromator  
crystals entails a dramatic decrease in intensity 
because of the decreasing Darwin widths. For a 

FWHM F . . . .  T - - -  r - -  r ] '  r 

[deg] | 
0 0 8 [  

I 0 0~ _ _ o ×o  o o ~ _ ~ o _ # ~ , ~ #  ° ~ r o ' ~  

L 1 ~ I ; I 
° ° °0  20 z. 60 8o '8o 2e[deg] 

Fig. 8. Resolut ion functions for a Be(004) and a Be(006) mono-  
chromator .  The reflections occur  s imultaneously.  The 
wavelength can be selected by setting the analyser  crystal to the 
desired angle. A , = 4 5 " = 0 . 2 2 m r a d ,  ( 9 , = 6 0  °, A 3 ( A t ) = 6 " =  
0-029 mrad,  A3(A2) = 4"=  0.019 mrad,  6)3(Ai) = 14.2 °, 6)3(A2) = 
9.45 °, @ = 0 . 1 5 m r a d ,  A ~ = 0 . 1 5 4 n m ,  A 2 = 0 . 1 0 3 n m .  The 
difference in the theoretical  resolut ion (full line) for the two 
reflections cannot  be resolved in this figure. As in Figs. 3 and 
6, a b roaden ing  of  0.03 ° due to the sample has to be introduced.  
The crosses cor respond  to measurements  at A~, the circles to 
the measurements  at 3. 2 . 

mosaic crystal, however, the reflection width is given 
by the mosaic spread and is therefore not angular 
dependent. 

If the mosaic spread exceeds the angular divergence 
of the source a double-crystal arrangement performs 
better than a single-crystal monochromator  because 
the peak width away from the focusing point cannot 
be pushed below (twice) the mosaic spread in the 
latter case. 

While the term depending on A, can be decreased 
by increasing tan ~9,, the term depending on ~ cannot 
be much smaller than ~, except close to the focusing 
point. 

Following these arguments the resolution function 
for a double mosaic-crystal monochromator  at O, = 
89 ° has been calculated. To have realistic values the 
parameters from beryllium crystals which have 
already been used successfully (Wroblewski, 1990a) 
have been chosen. The result can be seen in Fig. 9. 

Another representation is given in Fig. 10. Here 
the resolution is expressed in Ad/d as a function of 
(sin O)/A = 1/(2d).  To allow a comparison, the resol- 
ution given by a perfect Si(1 l l )  monochromator  is 
also shown. It has a minimum in a region where most 
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Fig. 9. Resolut ion funct ion for a Be(006) double  mosaic-crystal  
m o n o c h r o m a t o r  close to backscat ter ing and an Si( 111 ) analyser  
crystal (equat ion 17). A, = 45"=  0"22 mrad,  O, = 89 °, A 3 = 5"= 
0"024 mrad,  6)~ = 10.94 °, 6 = 0.15 mrad,  A = 0.119 nm. 
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Fig. 10. Resolut ion functions in units o f  Ad/d over  (sin (92)/A. 
The full curve was obta ined using the same parameters  as for 
Fig. 9. The dashed curve gives the resolution for the case that 
Si(l 11) crystals are used at the same wavelength of  0.119 nm. 
The dot ted line shows the limit that is given by the particle-size 
broadening  arising from particles o f  1 ~m thickness. 
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substances have only few reflections, while at lower 
d values, where the density of peaks is higher, the 
proposed arrangement shows a much better resol- 
ution. The superior performance of the mosaic,crystal 
monochromator becomes even more evident if the 
resolution functions are compared to the limit that is 
set by the particle-size broadening from the sample. 
Ad/d cannot exceed the value given by d / D  where 
D is the thickness of the particle. In Fig. 10 a particle 
thickness of 1 Ixm was chosen. While the curve for 
the mosaic monochromator comes close to this limit 
the curves for the conventional optics and that of the 
particle-size limit diverge. The performance of the 
perfect-crystal monochromator is only better in the 
focusing minimum where it goes even below the par- 
ticle-size limit. 

Taking coarser grains is no real solution since then 
they could in principle be better investigated by 
single-crystal diffraction at a synchrotron-radiation 
source (Bachmann, Kohler, Schulz & Weber, 1985), 
avoiding overlapping reflections. 

Concluding remarks 

The resolution functions for different types of angle 
dispersive powder diffractometers in parallel-beam 
geometry have been calculated and compared with 
experimental values. It is shown that perfect-crystal 
monochromators at a low Bragg angle are not ideally 
suited to very high-resolution work although their 
performance is superior to diffractometers at conven- 
tional sources using focusing geometry. Therefore, a 
new arrangement employing mosaic crystals at angles 
close to backscattering is proposed, giving a resol- 
ution function close to the limit set by the particle-size 
broadening. Such an instrument would give the high- 
est possible resolution that can be obtained with a 
polycrystalline sample. 
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Abstract 

The crystallographic nature of a quasicrystal structure 
is expressed in terms of the possibility of labeling 

* Contribution based on a lecture delivered 8 December 1989 
at the C. H. MacGillavry Symposium, Amsterdam. 
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'translationally' equivalent atomic positions by a set 
of n integers. The corresponding position vectors are 
integral linear combinations of n basic ones generat- 
ing a vector module M of rank n and dimension m. 
Because of the aperiodic nature of the quasicrystal, 
n is larger than m. Typical values observed in nature 
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